Second-Cousin Marriages

Meena Boppana, Anibha Singh, Ashley Cho

June 23, 2010

Axioms of a Marriage Society

- Only people with the same marriage type are allowed to marry.
- Brothers and sisters cannot marry.
- Marriage type for a child is determined by a chart depending on the marriage types of the parents and the child's gender.
- If two sets of people are related in the same way, then they will either both be allowed to marry or both not be.
- Any two individuals have the possibility of having a common ancestor.

Research questions

- How many types of second-cousin relationships are there?
- Which second-cousin marriages are always forbidden? Are any always allowed?
- Which second-cousin marriages are allowed in societies with 4 marriage types?
- Which second-cousin marriages are allowed in societies with 8 marriage types?

Kinds of second-cousin marriages

1. $S^{-1} S^{-1} S^{-1} S D D$
2. $D^{-1} S^{-1} S^{-1} S D S$
3. $S^{-1} S^{-1} D^{-1} D D D$
4. $D^{-1} S^{-1} D^{-1} D D S$
5. $S^{-1} S^{-1} S^{-1} D D D$
6. $D^{-1} S^{-1} S^{-1} D D S$
7. $S^{-1} S^{-1} S^{-1} D S D$
8. $S^{-1} D^{-1} S^{-1} D D D$
9. $S^{-1} S^{-1} D^{-1} S D D$
10. $D^{-1} S^{-1} D^{-1} S D S$
11. $S^{-1} S^{-1} D^{-1} S S D$
12. $S^{-1} D^{-1} D^{-1} S D D$
13. $S^{-1} S^{-1} S^{-1} S S D$
14. $S^{-1} D^{-1} S^{-1} S D D$
15. $D^{-1} S^{-1} S^{-1} D S D$
16. $D^{-1} D^{-1} S^{-1} D D D$

Second-cousin relationships 13, 14, 15, and 16 are always forbidden to marry.

- $S^{-1} S^{-1} S^{-1} S S D$
- $S^{-1} D^{-1} S^{-1} S D D$
- $S^{-1} S^{-1} D^{-1} D S D$
- $S^{-1} D^{-1} D^{-1} D D D$

All reduce to $S^{-1} D$, which cannot be the identity by the axiom that brothers and sisters cannot marry.

Definition: A set of generators is a set of elements such that all elements can be expressed as products of generators.

Theorem: In marriage societies with n marriage types, the group generated by the S and D matrices has order n.

Lemma: In the group generated by S and D, exactly one matrix takes marriage type A to marriage type B for any A and B.

Proof of theorem:
If the number of marriage types is greater than the order of the group, then a marriage type A cannot be taken to every other marriage type, so there exists a B where type A is not taken to B, which contracts the lemma.

If the number of marriage types is less than the order of the group, then a marriage type B must be taken to some marriage type B twice by the pigeonhole principle, which contradicts the lemma.

Definition: The order of an element g is the smallest n such that $g^{n}=e$.

Theorem (Lagrange): The order of any element of a group divides the order of the group.

Groups of order 4
The groups of order 4 are:

- Z_{4} : e, p, p^{2}, p^{3} (abelian)
- $Z_{2} X Z_{2}: e, s, d, s d$ (abelian)

Marriage societies of order 4

Z_{4} (cyclic):

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

1. $S=P, D=P^{2}$
2. $S=P^{2}, D=P$
3. $S=P, D=P^{3}$
4. $S=P, D=1$
5. $S=I, D=P$ The Tarau Society
6. The Kariera Society
e, S, D, SD (abelian)
$S=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
$D=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$

Second-cousin marriages that are allowed in each society

1. $S=P, D=P^{2}$

Relationships 2, 4, 11, 12
2. $S=P^{2}, D=P$

Relationships 2, 4, 11, 12
3. $S=P, D=P^{3}$

Relationships 1, 2, 3, 4, 7, 8, 11, 12
4. $S=P, D=I$

Relationships 2, 4, 11, 12
5. $S=I, D=P$ The Tarau Society

Relationships 2, 4, 11, 12
6. The Kariera Society

Relationships 1, 2, 3, 4, 7, 8, 11, 12

Theorem: In commutative groups of any order, marriages of second-cousin relationships $2,4,11$, and 12 are always allowed.

Proof: Looking at the matrix expressions for each relationship, we see that each is equivalent to the identity matrix.
$D^{-1} S^{-1} S^{-1} S D S$
$D^{-1} S^{-1} D^{-1} D D S$
$S^{-1} S^{-1} D^{-1} S S D$
$S^{-1} D^{-1} D^{-1} S D D$

Theorem: In a commutative group where $S^{2}=D^{2}$, marriage types $1,3,7$, and 8 are allowed.

$$
\begin{aligned}
& S^{-1} S^{-1} S^{-1} S D D \\
& S^{-1} S^{-1} D^{-1} D D D \\
& S^{-1} S^{-1} S^{-1} D S D \\
& S^{-1} D^{-1} S^{-1} D D D
\end{aligned}
$$

Societies with Z_{8} (abelian)

1. $S=e, D=p$
2. $S=p, D=e$
3. $S=p, D=p^{2}$
4. $S=p, D=p^{3}$
5. $S=p, D=p^{4}$
6. $S=p, D=p^{5}$
7. $S=p, D=p^{6}$
8. $S=p, D=p^{7}$
9. $S=p^{2}, D=p$
10. $S=p^{2}, D=p^{3}$
11. $S=p^{4}, D=p$

Second-cousin marriages in Z_{8}

Second cousin types 2, 4, 11, and 12 were allowed in all societies, since Z_{8} is abelian.

Relationships 1, 3, 7, 8 were allowed in the society with $S=p, D=p^{5}$.

The Aranda Society

D_{4}, The Dihedral Group of Degree 4
Non-abelian
$I, D, S, D S, S D, D^{2}, S D S, S D^{2}$
$S=\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$D=\left(\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Cayley Table

	D	S	$D S$	$S D$	D^{2}	S^{2}	$S D S$	$S D^{2}$
D	D^{2}	$D S$	$S D^{2}$	S	$S D S$	D	S^{2}	$S D$
S	$S D$	S^{2}	$S D S$	D	$S D^{2}$	S	$D S$	D^{2}
$D S$	S	D	S^{2}	D^{2}	$S D$	$D S$	$S D^{2}$	$S D S$
$S D$	$S D^{2}$	$S D S$	D^{2}	S^{2}	$D S$	$S D$	S	D
D^{2}	$S D S$	$S D^{2}$	$S D$	$D S$	S^{2}	D^{2}	D	S
S^{2}	D	S	$D S$	$S D$	D^{2}	S^{2}	$S D S$	$S D^{2}$
$S D S$	S^{2}	$S D$	S	$S D^{2}$	D	$S D S$	D^{2}	$D S$
$S D^{2}$	$D S$	D^{2}	D	$S D S$	S	$S D^{2}$	$S D$	S^{2}

First-cousin relationships in the Aranda society

1. $S D \neq D S$
2. $S^{2}=I \neq D^{2}$
3. $S^{2}=I \neq S D$
4. $D^{2} \neq D S$

Second-cousin relationships in the Aranda society

Second-cousin relationships 7, 8, 11, and 12 are allowed to marry.
Because D^{2} is a commuter and $S^{2}=I$, as you can see in Cayley's table.

THE END!!!

